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Background

/V
In the early 1990’s, the atmos-pheric

science community was looking for
better ways to monitor water vapor.

GPS Meteorology: Remote Sensing of Atmospheric Water Vapor
Using the Global Positioning System
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We present a new approach to remote sensing of water vapor based on the global positioning system
(GPS). Geodesists and geophysicists have devised methods for estimating the extent to which signals
propagating from GPS satellites to ground-based GPS receivers are delayed by atmospheric water
vapor. This delay is parameterized in terms of a time-varying zenith wet delay (ZWD) which is
retrieved by stochastic filtering of the GPS data. Given surface temperature and pressure readings at
the GPS receiver, the retrieved ZWD can be with very little iti inty into an
estimate of the integrated water vapor (IWV) overlymg that receiver. Networks of continuously

One promising candidate utilized the
radio signals broadcast by the GPS Sl ey L
satellites. Gt o e oy of i o o mmgm et

These measurements could be utilized in i weather research
into atmospheric storm systems, the hydrologic cycle, atmospheric chemistry, and global climate

Bevis, M., S. Businger, T. Herring, C.
Rocken, R. Anthes, R. Ware, 1992. GPS
meteorology: remote sensing of the
atmospheric water vapor using the global
positioning system. J. Geophys. Res., Vol.
97, No. D14, 75-94.

anu m me swrm-j in the analysis of water vapor are the major
systems. The advecuon of water vapor and its latent heat by source of error in short-term (0-24 hours) forecasts of
the general circulation of the atmosphere is an important i Efforts to dernize the National Weather
component of the Ea.nh'_s_mcridior'la.l encrgy ba!ancc. In  Service and fiscal austerity recently have conspired to
addition, water plays a critical role in many chemical reac- degrade the network [Bosart, 1990]. Curtailment of National
“0"5 that occur in in the atmosphere. Oceanic and Atmospheric Administration support for the
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© ists have developed a variety of means Mexican radiosonde i
Seerita ol program has resulted in the loss of the
to measure thc'vemcal and horizontal dllstnbuuon of water 3500 UTC Mexi soundings, which often crucial in
vapor. The radiosonde, a balloon-borne package

that sends temperature, humidity, and pressure data to the
ground by radio signal, is the cornerstone of the operational
analysis and prediction system at the National Meteorolog-
ical Center in this country and at similar operatlonal weather
forecast centers w ide. C di de in-
struments measure temperature and relahve humidity with
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ng features in the atmosphere that are
precursors to severe weather over the southern United
States.

Ground-based, upward-looking water vapor radiometers
(WVRs) are instruments that measure the background mi-
crowave radiation produced ic water vapor and
can estimate the integrated water vapor (IWV) content along
a given line of sight. They can simultaneously measure
integrated liquid water (ILW) along the same line of sight.
WVRs actually measure the sky brightness temperature at
two or more ies. It is the of
the brightness temperature that enables the simultaneous
estimation of IWV and ILW [Resch, 1984]. The algorithm
that is used to retrieve IWV from observation of sky
brightness contains which show
seasonal and site variations. Thus the retrieval algorithm
usually must be “‘tuned” to local conditions using indepen-
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GPS Observations in Meteorology

In both cases, the
fundamental measurement is

Surface Based Geometry
As = 10 [N(s)ds

N(s) the refractivity of the atmosphere along
the path of the radio signal N(s) = 108 (n(s)-1).

Space Based Geometry
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GPS Meteorology

GPS Satellite in
. Orbit

Signal Delay <=> Excess Path Length 20,200 km
IONOSPHERIC
DELAY ) )
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TOTAL and known dispersion relations Space
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DELAY pressure measurement GPS Slgnals |n the g
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geodetic inversion WET o
DELAY [ 20k
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NOAA Mission:

To understand and predict changes in

Earth’s environment and conserve and
manage coastal and marine resources
to meet our nation’s economic, social,
and environmental needs

Climate Goal:

Weather & Water Goal:

Commerce & Transportation
Goal:

Satellites
Modeling & Observing Systems

GPS-Met in NOAA

/

GPS-Met supports NOAA’s Mission by providing
reliable and accurate refractivity & moisture
observations at low cost under all weather
conditions.
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Applications of GPS-Met

The NESDIS Operational Blended TPW over CONUS
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Bias (mm)
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GPS Water Vapor Measurements Enter
Service in Operational RUC Weather Model

RUC PWY — GPS PWV for CONUS 05174 — 05189

on 28 June 2005
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VOLUME 135

Short-Range Forecast Impact from Assimilation of GPS-IPW Observations into the
Rapid Update Cycle

TrRACY LORRAINE SMITH,* STANLEY G. BENJAMIN, SETH 1. GUTMAN, AND SUSAN SAHM

NOAA/Earth Sysem Rescarch Laboratory, Boulder, Colorado

Smith, T.L., S.G. Benjamin, S.I. Gutman, and S.R.
Sahm, 2007: Short-range forecast impact from
assimilation of GPS-IPW observations into the
Rapid Update Cycle. Mon. Wea. Rev., Vol. 135,
No. 8, 2914-2930.

evident In 0. and 12-h forecasts The impact of GFS-IFW dara. the more
recent 20-km RUC. induding a 1-h asdmilation cyele and improved assimilation and physical parameter-

izations. now using real
during the March-May 2004 pericd. 20.km RL
compared with TPW for 2., 6-,9., and 12-h forec
to the strongest improvements in the
and 12-h forecasts. In a severe conv
convective available potential energy, an impos
midity. Positive impact from GPS-IPW assim

-IPW retrievals available 20 min after valid time. In a 3-month comparison
yel

with and without
5 this measre, assi

lation of GPS-IPW were
ion of GPS-IPW data led

nd 6-h forecasts and smaller but still evident improvements in 9-
otive weather case, inch
ant peedictor of severe storm potential, and relative hu-

n of GPS-IPW data improved forecasts of

on was found 1o vary over sexson. geographical location,

and time of day, apparently related to variations in vertical mixing. For examplo. GPS-IPW has a stronger

effect on improving RH fore

at 850 hPa at nighttime (than daytime) and in cooler seasons (than

a result

warmer seasons) when auface moisture

are Jozs o of conditions aloft. As
of these gudics, asimilation of GPS-IPW was added to the operational RUC run at NOAAN

in June

2005 and to the operational North American Mesoscale model (also at NCEP) in June 2006 to impeove their

accuracy for short-tange moisture forecasts

L Introduction

Observational tracking of the often rapidly evolving
moisture field is an essential component of weather
forecasting and numerical weather prediction (NWP).

* Additional affiliation: Cooperative Institute for Research in
the Atmosphere, Colorade State Universty, Fort Callins, Colo-
rado.

Corresponding awthor address: Ms. Tracy Lomaine Smith,
NOAA/ESRL/GSD, R/GSD1, 325 Broadway, Boulder, CO
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: tracy.l.smith@noan gov
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Short-range numerical weather forecas! accuracy often
suffers from inadequate observational definition of the
three-dimensional moisture field because of its high
spatial and temporal variability. Currently, three obser-
vation systems provide most atmospheric water vapor
measurements rawinsondes, surface stations, and sat-
ellites. Of these, only rawinsondes routinely provide
full tropospheric moisture profiles but do so with only
12-h temporal resolution and varying degrees of accu-
racy and reliability (e.g., Tumner et al. 2003). Surface
measurements of dewpoint temperature convertible to
relative humidity are available with high temporal reso-
lution but are not highly correlated with upper-air
moisture. Satellite infrared sounder measurements can-
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Example: NWP

Currently <300 stations in CONUS RUC RH Data Denial Experiments
Only 1-in-5 belong to NOAA/ESRL 2006-2007

Natl region, humidity averaged rms - matched
2006-11-26 thru 2006-12-06 (1000-400 mb)

3
N . 25 [ Winter 2006 Relative impact of
e wl = ) i - different observing
<. / . — A. s S 1P 5 15| + | systems on NWP
. - W ey g o[ N Fcsts as a function
et "o g .l tH of time of year
L 3 o) eSS oih,,.'..:::h zoverer
(] . -. .': . ‘..'. ®Je :: -Ob'.- #1 RAOB
T NaenEgenng, e o v £ F e w GRS
" e v , B #3: Aircraft
4 . Natl region, humidity averaged rms - matched
- - 2007-08-15 thru 2007-08-25 (1000-400 mb)
3
.5 | oummer 2007
2 ‘ I
. . I = A - No-aircratft - control
Full Implantation of an Operational g 15 ' s 5 - No-profier - coniol
GPS-Met Network over CONUS = f T It ( am— - No-ourtace - control
o 2 o5k 238 s F - No-GPS-PW - control
800 stations = L;"-h e
~ 200 will belong to NOAA/NWS I
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Currently <300 stations in CONUS
Only 1-|n-5 I ~alain~ s~ AINAA /ECDI

1) 2"d Jargest impact on RUC RH forecasts comes

N '_ ‘from GPS.

S T NWS.

Full Implantation of an Operational
GPS-Met Network over CONUS =
800 stations

~ 200 will belong to NOAA/NWS
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humidity (%)

Example: NWP

RUC RH Data Denial Experiments
NNNr ‘\007

Take Away Messages:

- 2) GPS data is used operationally in NOAA, but the
. system is operated and maintained by OAR, not
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Example: Satellite Cal/Val

Systematic differences between operational GOES East TPW products & GPS
were detected in 2002.

GPS GOES IPW IHOP Comparison
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4 24min Max Time Difference e 04 —|
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~ £ . .
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4 o 4
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Example: Satellite Cal/Val

Systematic differences between operational GOES East & GOES West TPW

products were detected in 2005.

Operational GOES East - GPS

71 15,456 points

|

I

RMS Difference (mm)

0 1 2 3 4 5 6

0 T T T I T T T
8 7 6 5 .4 3 .2 .1

A Biés (mm)

Bias=1.452 mm (GOES-East > GPS)
RMS = 3.244 mm
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Operational GOES West - GPS
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Example: Satellite Cal/Val

Significant improvements in experimental GOES East TPW products were

demonstrated in 2008.

Operational GOES-East

~1 15,456 points

RMS Difference (mm)

0 T T T T T T T T T T T T T I T I
8 7 6 .5 .4 3 2 1 0 1 2 i 4 5 6 7 8

Biasimm}

Bias=1.452 mm (GOES-East > GPS)
RMS = 3.244 mm
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RMS Difference (mm)

71 12,463 points . -
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Bias = 0.149 mm (GOES-East > GPS)
RMS =2.681 mm
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Example: Satellite Cal/Val

Significant improvements in experimental GOES East TPW products were

demonstrated in 2008.

Ope Take Away Message: JES-East

"7 15,456 |

|

RMS Difference (mm)

Biasimm)

Bias=1.452 mm (GOES-East > GPS)
RMS = 3.244 mm
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RMS Diffe

] These improvements in GOES-EAST TPW retrievals
are the result of an ongoing collaboration between
} ESRL/GSD, NESDIS and SSEC @ U. Wisconsin.

|
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1

Biasimm}

Bias=0.149 mm (GOES-East > GPS)
RMS =2.681 mm
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Summary

GPS TPW accuracy is sufficient to detect mm-level errors in TPU
GPS data and products are used operationally:
data displayed on operational AWIPS workstations.

GPS data used by NWS to assess and QC operational NWS
rawinsondes.

GPS data used by operational forecasters to improve forecast skill
during severe weather events.

GPS observations are assimilated into almost all operational NCEP
models.

GPS-Met is ready, willing and able to transition from research into
operations.
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Looking Forward

GPS will be installed at all GCOS Reference Upper-Air Network (GRUAN)
Sites to verify in situ and remote sensing moisture soundings for climate
monitoring.

GPS IPW estimates will be routinely made on ships in the open ocean to
calibrate and validate satellite and aircraft measurements.

GPS will be used to reduce uncertainty in monitoring ocean height levels
by correcting satellite altimeter errors caused by mis-modeling
tropospheric signal delays.

GPS observations will be made at high altitude observatories around the
world to place empirical constraints on moisture changes in the middle-
upper troposphere.
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